
Inductive and Coinductive Data Types in Typed
Lambda Calculus Revisited

Herman Geuvers

Radboud University Nijmegen
and

Eindhoven University of Technology
The Netherlands

TLCA 2015, Warsaw, July 2



Contents

I Looping a function

I The categorical picture: initial algebras

I Initial algebras in syntax

I Church and Scott data types

I Dualizing: final co-algebras

I Extracting programs from proofs

I Related Work



How a programmer may look at a recursive function

P: Given f : A→ A, I want to loop f until it stops
T: But if you keep calling f , it will never stop
P: Ehh...
T: You mean that you have a function f : A→ A + B, and if you
get a value in A, you continue, and if you get a value in B, you
stop?
P: That’s right! And the function I want to define in the end is
from A to B anyway!
T: So you want

f : A→ A + B

loop f : A→ B

satisfying

loop f a = case f a of (inl a′ ⇒ loop f a′)(inr b ⇒ b)



Can we dualize this looping?

f : A→ A + B

loop f : A→ B

loop f a = case f a of (inl a′ ⇒ loop f a′)(inr b ⇒ b)

Dually:
f : A× B → A

coloop f : B → A

satisfying
coloop f b = f 〈coloop f b, b〉.

coloop f b is a fixed point of λa.f 〈a, b〉.
So loops and fixed-points are dual. (Filinski 1994)



Inductive and coinductive data types

We want

I terminating functions

I pattern matching on data

I profit from duality



The categorical picture

Syntax for inductive data types is derived from categorical
semantics:
Initial F -algebra: (µF , in) s.t. ∀(B, g), ∃!h such that the diagram
commutes:

F (µF )
in - µF

FB

Fh

?

g
- B

!h

?

I Due to the uniqueness: in is an isomorphism, so it has an
inverse out : µF → F (µF ).
In case FX := 1 + X , µF = Nat and out is basically the
predecessor.



Inductive types are initial algebras

F (µF )
in - µF

FB

Fh

?

g
- B

!h

?

I We derive the iteration scheme: a function definition principle
+ a reduction rule. The h in the diagram is called It g

g : F B → B

It g : µF → B
with It g (in x) � g (F (It g) x)

I In case FX := 1 + X , µF = Nat and in decomposes in
0 : Nat, Succ : Nat→ Nat;

d : D f : D → D

It d f : Nat→ D
with

It d f 0 � d
It d f (Succ x) � f (It d f x)



Primitive recursion

Given d : B, g : Nat× B → B, I want h : Nat→ B satisfying

h 0 � d
h(Succ x) � g x (h x)



Defining primitive recursion

Given d : B, g : Nat× B → B

1 + Nat
[0,Succ] - Nat

1 + (Nat× B)

Id + 〈h1, h2〉

?

[〈0, d〉, 〈Succ ◦ π1, g〉]
- Nat× B

!〈h1, h2〉

?

We derive the primitive recursion scheme:

I From uniqueness it follows that h1 = Id (identity)

I From that we derive for h2:

d : B g : Nat× B → B

h2 : Nat→ B
with

h2 0 � d
h2(Succ x) � g x (h2 x)



The induction proof principle also follows from this

Given p0 : P 0, pS : ∀x : Nat.P x → P (Succ x)

1 + Nat
[0,Succ] - Nat

1 + (Σx : Nat.P x)

Id + 〈h1, h2〉

?

[〈0, p0〉,Succ× pS ]
- Σx : Nat.P x

!〈h1, h2〉

?

We derive the induction scheme:

I From uniqueness it follows that h1 = Id (identity)

I From that we derive for h2:

p0 : P 0 pS : ∀x : Nat.P x → P (Succ x)

h2 : ∀x : Nat.P x



In syntax, inductive types are only weakly initial algebras

F (µF )
in - µF

FB

Fh

?

g
- B

h

?

I In syntax we only have weakly initial algebras: ∃, but not ∃!.

I So we get out and primitive recursion only in a weak slightly
twisted form.

I We can derive the primitive recursion scheme via this diagram.



Primitive recursion scheme

Consider the following Primitive Recursion scheme for Nat. (Let D
be any type.)

d : D f : Nat→ D → D

Rec d f : Nat→ D

Rec d f 0 � d
Rec d f (Succ x) � f x (Rec d f x)

One can define Rec in terms of It. (This is what Kleene found out
at the dentist.)

d : D f : Nat→ D → D

〈0, d〉 : Nat× D λz .〈Succ z1, f z1 z2〉 : Nat× D → Nat× D

It 〈0, d〉λz .〈Succ z1, f z1 z2〉 : Nat→ Nat× D

λp.(It 〈0, d〉λz .〈Succ z1, f z1 z2〉 p)2 : Nat→ D

〈−,−〉 denotes the pair; (−)1 and (−)2 denote projections.



Primitive recursion in terms of iteration

Problems:

I Only works for values. For the now definable predecessor P we
have:

P(Succn+1 0) � Succn 0

but not P(Succ x) = x

I Computationally inefficient

P(Succn+1 0)� Succn 0 in linear time



Iterative, primitive recursive algebras, algebras with case
I An iterative T -algebra (also weakly initial T -algebra) is a

triple (A, in, It)
I An T -algebra with case is a triple (A, in,Case)
I A primitive recursive T -algebra is a triple (A, in,Rec)

T A
in - A

=

T B

T (It g)

?

g
- B

It g

?

TA
in - A

B

Case g

?

g
-

TA
in - A

=

T (B × A)

T 〈Rec g , Id〉

?

g
- B

Rec g

?



Defining data types in lambda calculus

I Iterative algebras can be encoded as Church data types

I Algebras with case can be encoded as Scott data types

I Primitive recursive algebras can be encoded as Church-Scott
or Parigot data types



Church numerals
The most well-known Church data type

0 := λx f .x p := λx f .f p (x)
1 := λx f .f x Succ := λn.λx f .f (n x f )
2 := λx f .f (f x)

I The Church data types have iteration as basis. The numerals
are iterators.

I Iteration scheme for Nat. (Let D be any type.)

d : D f : D → D

It d f : Nat→ D
with

It d f 0 � d
It d f (Succ x) � f (It d f x)

I Advantage: quite a bit of well-founded recursion for free.

I Disadvantage: no pattern matching built in; predecessor is
hard to define. (Parigot: predecessor cannot be defined in
constant time on Church numerals.)



Scott numerals
(First mentioned in Curry-Feys 1958)

0 := λx f .x n + 1 := λx f .f n
1 := λx f .f 0 Succ := λp.λx f .f p
2 := λx f .f 1

I The Scott numerals have case distinction as a basis: the
numerals are case distinctors.

I Case scheme for Nat. (Let D be any type.)

d : D f : Nat→ D

Case d f : Nat→ D
with

Case d f 0 � d
Case d f (Succ x) � f x

I Advantage: the predecessor can immediately be defined:
P := λp.p 0 (λy .y).

I Disadvantage: No recursion (which one has to get from
somewhere else, e.g. a fixed point-combinator).



Church-Scott numerals

Also called Parigot numerals (Parigot 1988, 1992).

Church Scott Church-Scott
0 := λx f .x 0 := λx f .x 0 := λx f .x
1 := λx f .f x 1 := λx f .f 0 1 := λx f .f 0 x
2 := λx f .f (f x) 2 := λx f .f 1 2 := λx f .f 1 (f 0 x)

For Church-Scott:

n + 1 := λx f .f n (n x f )

Succ := λp.λx f .f p (p x f )

Primitive recursion scheme for Nat. (Let D be any type.)

d : D f : Nat→ D → D

Rec d f : Nat→ D
with

Rec d f 0 � d
Rec d f (Succ x) � f x (Rec d f x)



Church-Scott numerals
Also called Parigot numerals (Parigot 1988, 1992).

Church Scott Church-Scott
0 := λx f .x 0 := λx f .x 0 := λx f .x
1 := λx f .f x 1 := λx f .f 0 1 := λx f .f 0 x
2 := λx f .f (f x) 2 := λx f .f 1 2 := λx f .f 1 (f 0 x)

I Advantage: the predecessor can immediately be defined:
P := λp.p 0 (λy .y).

I Advantage: quite a lot of recursion built in.

I Disadvantage: Data-representation of n ∈ N is exponential in
n. (But: see recent work by Stump & Fu.)

I Disadvantage: No canonicity. There are closed terms of type
Nat that do not represent a number, e.g. λx f .f 2 x .
NB For Church numerals we have canonicity:
If ` t : ∀X .X → (X → X )→ X , then ∃n ∈ N(t =β n).
Similarly for Scott numerals.



Typing Church and Scott data types
I Church data types can be typed in polymorphic λ-calculus, λ2.

E.g. for Church numbers: Nat := ∀X .X → (X → X )→ X .
I To type Scott data types we need λ2µ: λ2 + positive

recursive types:
I µX .Φ is well-formed if X occurs positively in Φ.
I Equality is generated from µX .Φ = Φ[µX .Φ/X ].
I Additional derivation rule:

Γ ` M : A A = B

Γ ` M : B

For Scott numerals: Nat := µY .∀X .X → (Y → X )→ X , i.e.

Nat = ∀X .X → (Nat→ X )→ X .

I Similarly for Church-Scott numerals:
Nat := µY .∀X .X → (Y → X → X )→ X ,

Nat = ∀X .X → (Nat→ X → X )→ X .



Dually: coinductive types

Our pet example is StrA, streams over A. Its (standard) definition
in λ2 as a “Church data type” is

StrA := ∃X .X × (X → A× X )

hd := λs.(s2 s1)1

tl := λs.〈(s2 s1)2, s2〉

NB1: I do typing à la Curry, so ∃-elim/∃-intro are done ‘silently’.
NB2: 〈−,−〉 denotes pairing and (−)i denotes projection.
Two examples

ones := 〈1, λx .〈1, x〉〉 : StrNat

nats := 〈0, λx .〈x ,Succ x〉〉 : StrNat

NB Representations of streams in λ-calculus are finite terms in
normal form.



Constructor for streams?

Church data type StrA

StrA := ∃X .X × (X → A× X )

hd := λs.(s2 s1)1

tl := λs.〈(s2 s1)2, s2〉

Problem: we cannot define

Cons : A→ StrA → StrA.

Problem arises because StrA is only a weakly final co-algebra. (No
uniqueness in the diagram.)
We need a co-algebra with co-case in the syntax or a primitive
co-recursive co-algebra



Coinductive types are final co-algebra’s
Final F -coalgebra: (νF , out) s.t. ∀(B, g), ∃!h such that the
diagram commutes:

B
g - FB

νF

!h

?

out
- F (νF )

Fh

?

For streams over A, F X = A× X .

B
〈g1, g2〉- A× B

StrA

!h

?

〈hd, tl〉
- A× StrA

Id× h

?

hd(h b) = g1 b
tl(h b) = h(g2 b)



Co-iterative, prim. co-recursive, co-algebras with co-case
I A co-iterative T -co-algebra (also weakly final T -co-algebra) is

a triple (A, out,CoIt)
I A T -co-algebra with co-case is a triple (A, out,CoCase)
I A primitive co-recursive T -co-algebra is a triple

(A, out,CoRec)

B
g - T B

=

A

!CoIt g

?

out
- T A

T (CoIt g)

?

B

A

CoCase g

?

out
- T A

g

-

B
g - T (A + B)

A

CoRec g

?

out
- T A

T [Id,CoRec g ]

?



For Streams over A this amounts to the following
Streams over A with CoCase and Streams over A with CoRec

B

StrA

CoCase g

?

〈hd, tl〉
- A× StrA

g

-

B
g - A× (StrA + B)

StrA

CoRec g

?

〈hd, tl〉
- A× StrA

Id× [Id,CoRec g ]

?

I CoCase with B := A× StrA and g := Id gives the constructor
for streams:

CoCase Id : A× StrA → StrA

I CoRec with B := A× StrA and g := Id× inl gives the
constructor for streams:

CoRec (Id× inl) : A× StrA → StrA



Streams à la Scott and à la Church-Scott
Streams as a Church data type (in λ2:

StrA := ∃X .X × (X → A× X )

Streams as a Scott data type (in λ2µ)

StrA = ∃X .X × (X → A× StrA)

hd := λs.(s2 s1)1

tl := λs.(s2 s1)2

Cons := λa s.〈a, λx .〈a, s〉〉 [take X := A]

Streams as a Church-Scott data type (in λ2µ)

StrA = ∃X .X × (X → A× (StrA + X ))

hd := λs.(s2 s1)1

tl := λs.case (s2 s1)2 of (inl y ⇒ y) (inr x ⇒ 〈x , s2〉)
Cons := λa s.〈a, λx .〈a, inl s〉〉 [take X := A]



Streams à la Scott and à la Church-Scott

We immediately check that

hd(Cons a s) � a

tl(Cons a s) � s

Remark: Other definitions of Cons are possible, e.g.

Cons := λa s.〈〈a, s〉, λv .〈v1, inl v2〉〉 [take X := A× StrA]



The general pattern (inductive types)
Let Φ(X ) be a positive type scheme, i.e. X occurs only positively
in the type expression Φ(X ).
I We view Φ(X ) as a functor on types. Positivity guarantees

that Φ acts functorially on terms: we can define Φ(f )
satisfying

f : A→ B

Φ(f ) : Φ(A)→ Φ(B)

I We can define an iterative Φ-algebra, a Φ-algebra with case
and a primitive recursive Φ-algebra in the type theory as
follows:

I Church data type (iterative), in λ2

A := ∀X .(Φ(X )→ X )→ X

I Scott data type (case), in λ2µ

A = ∀X .(Φ(A)→ X )→ X

I Church-Scott data type (primitive recursive), in λ2µ

A = ∀X .(Φ(A× X )→ X )→ X



The general pattern (coinductive types)

Let again Φ(X ) be a positive type scheme.

We can define an co-iterative Φ-co-algebra, a Φ-co-algebra with
co-case and a primitive co-recursive Φ-co-algebra in the type
theory as follows:

I Church data type (co-iterative), in λ2

A := ∃X .X × (X → Φ(X ))

I Scott data type (co-case), in λ2µ

A := ∃X .X × (X → Φ(A))

I Church-Scott data type (primitive co-recursive), in λ2µ

A := ∃X .X × (X → Φ(A + X ))



Definition of streams in Coq

In the Coq system, CoInductive types are defined using
constructors and not using destructors.
Question: Can we reconcile this?

CoInductive Stream (T: Type): Type :=

Cons: T -> Stream T -> Stream T.

The destructors are defined by pattern matching.
How to define

ones = 1 :: ones

with ones : Stream nat

CoFixpoint ones : Stream nat :=

Cons 1 ones.

The recursive call to ones is guarded by the constructor Cons.
NB. The term ones does not reduce to Cons 1 ones.



Zipping and streams as sequences

The following definition is accepted by Coq

CoFixpoint zip (s t : Stream A) :=

Cons (hd s) (zip t (tl s)).

There is an isomorphism between Stream A and nat -> A.

CoFixpoint F (f:nat->A) : Stream A :=

Cons (f 0)(F (fun n:nat => f (S n))).

This defines

F (f ) := f (0) :: F (λn.f (n + 1))

which is correct, because F is guarded by the constructor.



Deriving Coq’s coinductive types from final coalgebras

B
g - FB

νF

!h

?

out
- F (νF )

Fh

?

For a co-inductive type definition, Coq gives the following

I Cons : F (ν F )→ ν F

I out ◦ Cons = Id
(For streams: hd(Cons a s) = a and tl(Cons a s) = s).

I ∀x : ν F ,∃y : F (ν F ), x = Cons y

I A guarded definition principle

Can we recover these from the final algebra diagram?



Coq’s coinductive types from final coalgebras

B
g - FB

νF

!h

?

out
- F (νF )

F h

?

I We define Cons := CoIt(F out) (the h we get if we take
g := F out.

I Then out ◦ Cons = Id (By Lambek’s Lemma)

I From this one can prove

Cons ◦ out = Id

I Then for ∀x : A,∃y : F A, x = Cons y ,
by taking y := out x .



Deriving Coq’s guarded definitions from final coalgebras for
StrA

B
〈g1, g2〉- A× B

StrA

!h

?

〈hd, tl〉
- A× StrA

Id× h

?

The left of the diagram can be further decomposed.



Coq’s guarded definitions from final coalgebras

B
〈g1, g2〉- A× B

A× StrA

〈g1, h ◦ g2〉

�

StrA

!h

?

〈hd, tl〉
-

Cons -

A× StrA

Id× h

?

Coq actually uses this property to define the function h.

CoFixpoint h (x:A) := Cons(g1 x) (h (g2 x))



Programming with proofs

Following Krivine, Parigot, Leivant we can use proof terms in
second order logic (AF2) as programs. This also works for
recursively defined data types.
Assume some ambient domain U, with a constant Z and a unary
function S.
The natural numbers defined as a predicate on U:

Nat(x) := ∀X .X (Z)→ (∀y .Nat(y)→ X (y)→ X (S y))→ X (x)

When we erase all first order parts, we get the Church-Scott
natural numbers:

Nat := ∀X .X → (Nat→ X → X )→ X



Programming with proofs

The method now defines the untyped λ-terms 0 and Succ as the
proof-terms

0 : Nat(Z)

Succ : ∀x .Nat(x)→ Nat(S x)

Then

0 =β λz f .z

Succ =β λp.λz f .f p (p z f )

All the proofs of Nat(t) are representations of numbers; there is no
‘junk’



Recursive programming with proofs

Nat(x) := ∀X .X (Z)→ (∀y .Nat(y)→ X (y)→ X (S y)→ X (x)

Programming can now be done by adding a function symbol with
an equational specification, e.g.

A(Z, y) = y

A(S(x), y) = S(A(x , y))

Then give a proof term

Add : ∀x , y .Nat(x)→ Nat(y)→ Nat(A(x , y))

The proof-term Add is an implementation of addition in untyped
λ-calculus.



Corecursive programming with proofs
Given a data type A, and unary functions hd and tl, we define
streams over A by

StrA(x) := ∃X .X (x)× (∀y .X (y)→ A(hd y)× X (tl y))

We find that for our familiar functions hd and tl:

hd := λs.(s2 s1)1 : ∀x .StrA(x)→ A(hd x)

tl := λs.〈(s2 s1)2, s2〉 : ∀x .StrA(x)→ StrA(tl x)

Adding equations for ones:

hd(ones) = 1

tl(ones) = ones

we can give a proof term

ones : StrNat(ones)

for example by taking

ones := 〈Id, λx .〈1, Id〉〉 : StrNat



Correctness of corecursive programming with proofs

The proof term ones is guaranteed to be correct:

hd(ones) � 1

tl(ones) � ones



Corecursive programming with proofs

To define Cons, we need to make StrA into a recursive type:

StrA(x) := ∃X .X (x)×(∀y .X (y)→ A(hd y)×(StrA(tl y)+X (tl y)))

Adding equations for Cons:

hd(Cons x y) = x

tl(Cons x y) = y

We see that with

Cons := λa s.〈〈a, s〉, λv .〈v1, inl v2〉〉

[take X (x) := A(hd x)× StrA(tl x)].
we have

Cons : ∀x , y ,A(x)→ StrA(y)→ StrA(Cons x y)



The typing system

To avoid syntactic overload and to get untyped λ terms, we use
Curry style typing (as in AF2)

p : A ∈ Γ

Γ ` p : A

Γ ` M : A→ B Γ ` N : A

Γ ` M N : A

Γ, p : A ` M : B

Γ ` λp.M : A→ B

Γ ` M : A
X /∈ FV(Γ)

Γ ` M : ∀X .A

Γ ` M : ∀X .A

Γ ` M : A[B(~x)/X ]

Γ ` M : A
x /∈ FV(Γ)

Γ ` M : ∀x .A

Γ ` M : ∀x .A

Γ ` M : A[t/x ]

This works all very well for the inductive data types case



Problem
For the coinductive case, we have to deal with ∃. Curry-style exists
rules are:

Γ ` M : A[B(~x)/X ]

Γ ` M : ∃X .A
Γ ` M : ∃X .A Γ, p : A ` N : B

if X /∈ FV(Γ,B)
Γ ` N[M/p] : B

Problem: This system does not satisfy the not Subject Reduction
property! (See counterexample in Sørensen-Urzyczyn)
The rules should be:

Γ ` M : A[B(~x)/X ]

Γ ` λh.hM : ∃X .A

Γ ` M : ∃X .A Γ, p : A ` N : B
if X /∈ FV(Γ,B)

Γ ` M(λp.N) : B



Conclusion/Questions

I Church-Scott data types provide a good union of the two,
I giving (co)-recursion in untyped λ-calculus
I being typable in λ2µ
I but: the size of representation is a problem. (Recent work by

Stump and Fu)

I We can prevent closed terms that don’t represent data, by
moving to types in AF2

Some questions:

I Can the “programming with proofs” approach in AF2 for
inductive types fully generalize to coinductive types? Using
Curry-style typing?

I Does that include corecursive types?

I Can we reconcile with the “naive” looping intuition?



Related Work on (co)inductive types in non-dependent
type theories, lots

I Mendler style inductive/coinductive types: Mendler, Matthes,
Uustalu, Vene

I Extending to course-of-value recursion: Matthes, Uustalu,
Vene

I Impossibility results: Parigot, Malaria, Splawski & Urzyczyn

I General recursion via coinductive types: Capretta

I Recursive Coalgebras and Corecursive Algebras: Osius;
Capretta & Uustalu & Vene



Related Work on coinductive types in dependent type
theories

I Coquand, Gimenez

I Copatterns by Abel, Pientka, Setzer

I Type theory based solely on inductive and coinductive types:
Basold, H.G.



Related Work on programs from proofs, lots

I Mendler style inductive/coinductive types: Miranda-Perea &
González-Huesca

I Christophe Raffalli: infinitary terms

I Tatsuta: first order logic with (co)-inductive definitions

I Leivant



Related Work on Scott numerals/data

I “Types for Scott Numerals” Abadi, Cardelli, Plotkin 1993

I Brunel & Terui: capture polynomial time functions using
Scott data types and linear types.

I Similar use in Baillot & De Benedetti & Ronchi della Rocca

I Scott data types with call-by-value and call-by-name iteration
(H.G.)



Questions?


